激情综合啪啪6月丁香,久久久久国产精品91福利,99精品日韩欧美在线观看,91成人午夜福利在线观看国产

行業(yè)產(chǎn)品

  • 行業(yè)產(chǎn)品

上海昊量光電設(shè)備有限公司


當(dāng)前位置:上海昊量光電設(shè)備有限公司>>光譜儀器>>拉曼光譜儀 | 拉曼顯微成像儀>>超高速顯微拉曼成像光譜儀

超高速顯微拉曼成像光譜儀

返回列表頁
參  考  價(jià)面議
具體成交價(jià)以合同協(xié)議為準(zhǔn)

產(chǎn)品型號

品       牌

廠商性質(zhì)經(jīng)銷商

所  在  地

聯(lián)系方式:經(jīng)理查看聯(lián)系方式

更新時(shí)間:2024-02-18 13:30:10瀏覽次數(shù):189次

聯(lián)系我時(shí),請告知來自 環(huán)保在線

產(chǎn)品簡介

超高速顯微RIMA激光系統(tǒng)是高精度、面成像激光拉曼技術(shù),具有速度快,功率密度低等特點(diǎn)!由Photon公司開發(fā)的整視場儀(RIMA™)可對大面積(1mmx1mm及更大)的材料進(jìn)行快速光譜和空間表征

詳細(xì)介紹

超高速顯微


RIMA激光系統(tǒng)是高精度、面成像激光拉曼技術(shù),具有速度快,功率密度低等特點(diǎn)!


由Photon公司開發(fā)的整視場儀(RIMA™)可對大面積(1 mm x 1 mm及更大)的材料進(jìn)行快速光譜和空間表征。 該設(shè)備與高分辨率的高光譜結(jié)合,采用面成像技術(shù),將激光擴(kuò)束后,用特殊的光學(xué)元件將擴(kuò)束后的高斯分布的激光整形成均勻分布的平頂激光,照射在樣品上,濾除反射的激光后,所有激發(fā)的拉曼光和再通過可調(diào)為主的高光譜成像組件,成像在上,可在幾分鐘內(nèi)完成,以像元為單位,可以形成高達(dá)十萬組數(shù)據(jù)。是目前市面上相對快的拉曼成像設(shè)備. RIMA™捕獲整個(gè)視場的單色圖像,一個(gè)波長接一個(gè)波長。RIMA™是一款的拉曼成像顯微系統(tǒng),它可以提供有關(guān)于晶體生長,粒子數(shù)量分布,均勻性,壓力或者其它關(guān)鍵屬性的信息。通過將從拉曼光譜指紋獲得的豐富信息與高光譜成像的速度相結(jié)合,RIMA™擴(kuò)展了樣品分析的范圍,是材料和生物醫(yī)學(xué)領(lǐng)域強(qiáng)大的成像手段

 

產(chǎn)品特點(diǎn)
1. 快速global mapping(非掃描式)
2. 百萬像素拉曼光譜,成像時(shí)間僅幾分鐘
3. 斯托克斯和反斯托克斯
4. 高光譜分辨率和空間分辨率


設(shè)備原理圖:




系統(tǒng)參數(shù):


RIMA 532

RIMA 660

RIMA 785

Spectral Range*

190 to 4000 cm-1

100 to 4000 cm-1

130 to 3200 cm-1

Spectral Resolution

< 7="">

<>

<>

Microscope

Upright

Upright

Inverted

Objectives

20X, 50X, 100X

20X, 50X, 100X

20X, 60X, 100X

Excitation Wavelengths*

532nm

660nm

785nm

Spatial Resolution

Sub-micron

Maximum Scanning Speed

250 μm2/min at full spectral range

Wavelegth Absolute Accuracy

1 cm-1

Camera*

Back-illuminated CCD or camera   1024x1024 px

Video Mode

Megapixel camera for sample   vizualisation

Preprocessing

Spatial ing, statistical tools,   spectrum extraction, data normalization, spectral calibration

Hyperspectral Data Format

FITS, HDF5

Single Image Data Format

JPG, PNG, TIFF, CSV, PDF, SGV

Software

Computer with PHySpecTM control and   analysis software included




應(yīng)用領(lǐng)域:


單層石墨烯鑒別

Graphene, one of the most popular allotropes of carbon, has sparked broad interest in the field of material science since it was first isolated in 2004 by Professors Geim and Novoselov (University of Manchester). Curren tly, the synthesis of large-scale graphene on copper surfaces by chemical vapor deposition (CVD) is being explored by the scientific community. Despite considerable efforts, CVD graphene in different growth conditions exhibits various morphologies such as the presence of hillocks, defects, grain boundaries and multilayer island formation, effects which researchers are attempting to mitigate. But to be able toexhaustively study the composition of these samples, hyperspectral Raman imaging was required, and was carried out on CVD monolayer graphene with bilayer islands. Raman spectroscopy is a non-destructive analysis method that provides microscopic structural information by comparing a sample’s spectrum with reference spectra. Here, we present selected results from Prof. Martel’s group at Université de Montréal obtained during the investigation of the formation of graphene multilayer islands during Chemical Vapor Deposition growth with methane as feedstock. Known Raman signatures of the different configurations of graphene were used in this study to map the number of layers of the samples.

Raman imaging was performed with the hyperspectral Raman imaging platform RIMA™ based on Bragg tunable filter technology. In these measurements, a CW laser at λ = 532 nm illuminated 130 × 130 μm2 and 260 × 260 μm2 sample surface areas through 100X and 50X microscope objectives respectively. In this configuration, the sample was excited with 120 μW/μm2  and 30 μW/μm2 and the resolution was diffraction limited.

FIG. 1 (a) presents a 130 × 130 μm2 Raman map of graphene’s G band (~1590 cm-1) in three different families: monolayer graphene (blue), bilayer graphene in resonance (red) and bilayer graphene out of resonance (green). Their typical associated Raman spectra are presented in FIG. 1 (b-c). The intensity variations of the G band reveal information on the stacking of the layers. The most significant changes in intensity observed in FIG. 1 (b) can be explained by resonance resulting from the twisted angle (13.5° at λexc = 532 nm [1]) of the bilayer graphene. FIG. 1 (d-f) presents similar results as in FIG. 1 (a-c), but data were acquired from a larger area: 260 × 260 μm2. The intrinsic specificity of Raman scattering combined with global imaging capabilities allows users to assess large maps (hundreds of microns) of defects, number of layers and stacking order, etc.

 
納米材料分析

Global Raman imaging is an exceptional technique for the analysis of large surfaces of thin films and advanced materials. Its rapidity makes it a great tool not only for universities and research institutes, but also for industrial laboratories. With no or minimal sample preparation, RIMA™, .’s new hyperspectral Raman imager, can easily take part in routine analysis, where the prompt access to information about sample composition is crucial for the development of new materials.

With systems based on point-to-point or scanning technologies, the acquisition of maps of large areas is often tedious and time consuming: the analysis of a sample may take hours. RIMA™ expedites in minutes the acquisition of the whole area in the field of view, rendering full maps of a sample with unmatched rapidity. In fact, the hyperspectral cube is built image by image, along the spectral window of interest, with a spectral resolution better than 7 cm--1. Since a spectrum is recorded for each pixel, it is possible, with a 1024 x 1024 pixels camera, to collect more than one million spectra without moving the sample. Moreover, the size of the maps can be as large as 650 x 650 mm2, depending on the magnification of the objective used for the analysis. Photon etc.’s filters used for hyperspectral imaging are based on holographic gratings, and provide very high efficiency for an optimal acquisition of the weak Raman scattering. Combined with top of the line low noise CCD or cameras, RIMA™ is the most efficient Raman imaging system on the market.

In order to show the advantages of RIMA™ in the analysis of nanomaterials in biological systems, carbon nanotubes (CNT) have been incubated with a sample of Candida Albicans yeast cells and exposed to a homogeneous (flat-top) laser excitation of 532 nm on the entire field of view. With a 50X objective, an area of 260 x 130 μm2 was imaged, with a step of 4.5 cm--1 and an exposition time of 15 s. The complete analysis took 20 minutes, for a total of more than 60,000 spectra.

Figure 1 shows the Raman hyperspectral cube of a portion of the imaged area containing the yeast. The monotic Raman images revealed the position of the aggregated yeast cells stained with the CNTs. The typical signal of CNTs (red line) confirmed their presence on the yeast cells, while in other areas the hyperspectral camera did not detect any CNT Raman signal (blue line).


Raman Multiplexing

DEVELOPMENT AND CHARACTERIZATION OF CARBON NANOTUBE BASED RAMAN NANOPROBES BY RAMAN HYPERSPECTRAL IMAGING: MULTIPLEXING AND BIODETECTION

The potential of Photon etc. Raman Imaging Platform, RIMA™, was demonstrated by Pr. R Martel’s group at Université de Montréal in a recent publication in Nature Photonics on the development of Raman nanoprobes [1].

These new kind of nanoprobes are based on single-wall carbon nanotubes and J-aggregated dyes, such as α?sexithiophene (6T), β-carotene (βcar) and phenazine (Ph). Compared to fluorescent probes, Raman probes have the advantages of being more stable over long periods of times (weeks and years) and they produce a unique signature with narrow peaks that allows easy multiplexing of 3 probes or more using the same excitation laser energy. This nanomaterial shows a very high Raman scattering cross-section, without any photobleaching or fluorescence background, even at high laser intensities.

In this work RIMA™ enabled the imaging and multiplexing of three different probes with sensitivity down to the single object as seen in Figure 1.  The different probes were deposited on a SiOx/Si surface and characterized by taking a single hyperspectral image. We were able to determine, without a doubt, the position of each isolated probe (diameters: 1.3 ± 0.2 nm), and even identify the co-localized probes (Fig 1b, Ph and βcar). The sensitivity, efficiency and hyperspectral properties of RIMA™ were essential to the development of these probes.

The carbon nanotube, which serves as a capsule for the probe, can be covalently functionalized to selectively target biomolecules, such as streptavidin. We demonstrated RIMA™’s potential in the detection of probes in a biological context by imaging the βcar probe functionalized with PEG-biotin groups that targeted streptavidin.

A pattern of 10 μm spots of streptavidin was created by microcontact printing and then incubated with the probes. The pattern was maintained hydrated under a cover slip during imaging and the probes were detected where streptavidin was located. Figure 2 shows Raman hyperspectral images at 1520 cm-1 of two printed surfaces, where streptavidin was deposited either inside (main figure) or around the dots (inset). With a single acquisition, a sample area of 133 x 133 μm2 was studied using RIMA™ with laser excitation at 532 nm. Damages to the samples were also limited due to a uniform illumination over the portion of the sample in the field of view. In terms of spectral resolution and large surface area imaged, RIMA™ provided hyperspectral images in a much shorter time then conventional point-by-point mapping Raman imagers.

Raman hyperspectral imaging is a powerful technique to study a wide range of materials, from nanopatterned surfaces to biological systems. Because of its high throughput, RIMA™ allows the acquisition of spectrally resolved maps of large area samples, without damaging the surface.


感興趣的產(chǎn)品PRODUCTS YOU ARE INTERESTED IN

環(huán)保在線 設(shè)計(jì)制作,未經(jīng)允許翻錄必究 .? ? ? Copyright(C)?2021 http://m.hg1112.cn,All rights reserved.

以上信息由企業(yè)自行提供,信息內(nèi)容的真實(shí)性、準(zhǔn)確性和合法性由相關(guān)企業(yè)負(fù)責(zé),環(huán)保在線對此不承擔(dān)任何保證責(zé)任。 溫馨提示:為規(guī)避購買風(fēng)險(xiǎn),建議您在購買產(chǎn)品前務(wù)必確認(rèn)供應(yīng)商資質(zhì)及產(chǎn)品質(zhì)量。

會員登錄

×

請輸入賬號

請輸入密碼

=

請輸驗(yàn)證碼

收藏該商鋪

登錄 后再收藏

提示

您的留言已提交成功!我們將在第一時(shí)間回復(fù)您~
久久人妻一区二区三区欧美-国内不卡的一区二区三区| 人妻互换精品一区二区-夜夜爽一区二区三区视频| 国产一区二区三区四区五区麻豆-欧美一级在线视频播放| 国产精品v欧美精品v日韩精品-国产欧美日韩精品区一区二污污污| 亚洲欧洲一区二区福利-亚洲欧美日韩高清中文| 日本中文字幕啊啊啊啊-久久精品伊人久久精品伊人| 乱入一二三免费在线观看-久久精品亚洲精品国产色婷婷| 日韩毛片在线免费人视频-超碰中文字幕av在线| 免费午夜福利在线观看-黄色日本黄色日本韩国黄色| av一区免费在线观看-中文字幕日韩国产精品视频| 成人免费资源在线观看-欧美国产日韩高清在线综合| 91亚洲美女视频在线-熟妇人妻精品一区二区三区蜜臀| 一区二区三区日本韩国欧美-日本1区2区3区4区在线观看| 女主播啪啪大秀免费观看-精品99午夜福利影院| 在线免费观看黄片喷水-国产精品白丝网站在线观看| 亚洲黄片三级三级三级-国产成人一区二区在线视频| 国产精品一区二区在线免费-久久精品国产亚洲av热明星| 亚洲av高清一区三区三区-久久人妻夜夜做天天爽| 久久精品亚洲国产av久-国产精品视频一区二区免费| 亚洲一区二区免费av-中文字幕人妻久久久一区二区三区| 91麻豆免费在线视频-欧美中文天堂在线观看| 国产av一区二区三区日韩接吻-av网址在线播放网站| 青青操视频在线观看国产-欧美成人乱码在线观看| 日本韩国亚洲欧美三级-日本东京不卡网一区二区三区| 青青操大香蕉在线播放-国产亚洲欧美精品在线观看| 免费看黄色污污的网站-欧美一区二区三区爽爽| 欧美黄色三级视频网站-国产九九热视频在线观看| 亚洲欧美日韩二区三区-国产在线欧美一区日韩二区| 欧美日韩成人在线观看-久久五月婷婷免费视频| 亚洲av专区在线观看国产-丰满人妻av一区二区三区| 亚洲国产精品日韩欧美-国产又粗又硬又大爽黄| 国产精品二区高清在线-91精品91久久久久久| 中文字幕日本在线资源-国产+成+人+亚洲欧洲自线| 国产精品电影在线一区-亚洲国产大片一区二区官网| 7m视频7m精品视频网站-亚洲综合香蕉视频在线| 欧美一区二区三区调教视频-三上悠亚国产精品一区二区三区| 国产成人精品免费视频大全办公室-亚洲欧美日本综合在线| av噜噜国产在线观看-欧美视频亚洲视频一区二区三区| 欧美精品午夜一二三区-a屁视频一区二区三区四区| 国产av一区二区三区日韩接吻-av网址在线播放网站| 看肥婆女人黄色儿逼视频-秋霞电影一区二区三区四区|